Titanium(IV) Chloride Catalyzed Cyanation of Benzylic Halides With Trimethylsilyl Cyanide¹

Herman E. Zieger* and Shiming Wo

The Graduate School of the City University of New York, Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210

Received February 1, 1994®

Six sterically hindered benzylic chlorides have been substituted with cyano groups in excellent yields with trimethylsilyl cyanide and titanium tetrachloride in methylene chloride. Both monochloro substrates such as diphenylmethyl chloride and triphenylmethyl chloride and dichloro substrates such as dichlorodiphenylmethane and sym-tetraphenylethylene dichloride were studied. Because isonitriles are plausible reaction intermediates, the isomerization of trityl isonitrile by TiCl₄ and by trityl tetrafluoroborate was studied at 0 and -78 °C. Both reagents catalyze conversion to triphenylacetonitrile at 0 °C while only trityl tetrafluoroborate is effective at -78 °C. It was also found that trityl tetrafluoroborate reacts with trimethylsilyl cyanide in the absence of TiCl₄ to give triphenylacetonitrile in 96% yield.

sym-Tetraphenylethylene dichloride, 1, is a stable wellknown compound which is easily available in 90% yields by adding chlorine to tetraphenylethylene.² As part of a synthetic effort to prepare tetraphenylethyl cations and study their subsequent reactions, we treated 1 with various silver salts as well as with trimethylsilyl cyanide. 1b

Trimethylsilyl cyanide (TMSCN) reacts with 1 in the presence of TiCl₄ at 0 °C for 2.0 h in CH₂Cl₂ to give a 93% yield of 3-chloro-2,2,3,3-tetraphenylpropanenitrile, 2. See Scheme 1. Treatment of 1 with 2 mol each of TMSCN and TiCl₄ gave a 50% yield of tetraphenylsuccinonitrile, 3, and tetraphenylethylene. However, if one premixes the TMSCN and 1 and adds TiCl4 slowly, 2 can be secured unaccompanied by 3 and tetraphenylethylene. Treatment of 2 with 1 mol each of TMSCN and TiCl₄ gave a 90% yield of 3 after 4.5 h of reaction. Authentic 3 was prepared from diphenylacetonitrile by the literature procedure to confirm the structure (1H and ¹³C NMR, mp and undepressed mixed mp).³

That TMSCN substitutes the cyano group for chlorine in tertiary alkyl chlorides in the presence of SnCl4 was shown by Reetz.4 In that work it was found that SnCl4 is more effective than such Lewis acids as zinc, bismuth, aluminum, iron, or titanium halides. Others have successfully cyanated 1-haloadamantane⁵ and a chiral α-chloro thioether⁶ with TMSCN and SnCl₄ in methylene chloride. Moreover, aryl iodides can be cyanated with TMSCN in the presence of tetrakis(triphenylphosphine)palladium(0) in triethylamine solvent.⁷

Results and Discussion

Inspired by the apparent ease of converting 1 into 2, we sought to establish the generality of the cyanation

process by studying a group of benzylic chlorides which are shown in Table 1. The most interesting substrate is that of the geminal dihalide, dichlorodiphenylmethane, which can be monocyanated to afford α-chlorodiphenylacetonitrile which in turn can be converted more slowly into diphenylmalononitrile, a compound not readily available from malonic ester or malononitrile. Benzyl chloride did not react and was recovered unchanged after 2 h. A reaction that was run at room temperature for 24 h gave a mixture of polymeric products.

Two alternative mechanisms^{4b} have been considered as possible explanations for the formation of nitriles from tertiary alkyl halides. In mechanism 1 the fact that trimethylsilyl cyanide is in equilibrium with a small amount of trimethylsilyl isocyanide suggests that the isonitrile could undergo attack by a tertiary carbocation on carbon to form a nitrilium ion intermediate. See step iii in mechanism 1. This intermediate could break down to give the observed products.

Mechanism 1

- R₃C-C≡N-Si(CH₃)₃TiCl₅ → R₃C-CN + (CH₃)₃SiCl + TiCl₄

In mechanism 2 the tertiary carbocation intermediate adds to the predominant form of TMSCN at nitrogen forming a nitrilium ion isomeric with that formed in mechanism 1. This nitrilium ion breaks down to produce the isonitrile of the starting halide. In the absence of carbocations one should be able to isolate the isonitrile providing its further rearrangement to yield nitrile is not faster than its formation. Indeed, adamantyl chloride is reported to react with TMSCN to give adamantyl isonitrile which is reported not to be rearranged to adamantyl

[®] Abstract published in Advance ACS Abstracts, June 1, 1994. (1) Presented in part at the 207th ACS National Meeting, San Diego CA, 1994, ORGN 486. (b) Details of the reaction of 1 with silver salts

will appear in a separate paper.
(2) (a) Burchill, P. J. M.; Thorne, N. J. Chem. Soc. C 1968, 696-700. (b) Bassett, H.; Thorne, N.; Young, C. L. J. Chem. Soc. C 1949,

⁽³⁾ Kharasch, M.; Sosnovsky, G. Tetrahedron 1958, 3, 97-104. (4) (a) Reetz, M.; Chatziosifidis, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 1017. (b) Reetz, M.; Chatziosifidis, I.; Kunzer, H.; Muller-

Starke, H. Tetrahedron 1983, 39, 961-5.
(5) (a) Olah, G. A.; Farooq, O.; Prakash, G. K. S. Synthesis 1985, 1140. (b) Sasaki, T.; Nakanishi, A.; Ohno, M. J. Org. Chem. 1981, 46,

⁽⁶⁾ Bates, H. A.; Rosenblum, S. B. J. Org. Chem. 1986, 51, 3447.
(7) Chatani, N.; Hanafusa, T. J. Org. Chem. 1986, 51, 4714.

entry	$\mathbb{R}\mathrm{Cl}^a$	TiCl ₄ (mmol)	TMSCN (mmol)	RCN	yield ^b (%)
1	Ph ₂ CHCl	5.5	5.5	Ph ₂ CHCN	93
2	Ph_2CCl_2	5.0	5.0	Ph ₂ C(Cl)CN ^c	91
		11	11		98
3^d	Ph ₂ C(Cl)CN	5.5	5.5	Ph ₂ C(CN)CN ^e	85
4	Ph ₃ CCl	5.5	5.5	Ph ₃ CCN ^f	95
5	Ph ₂ C(Cl)C(Cl)Ph ₂	5.0	5.0	Ph ₂ C(Cl)C(CN)Ph ₂	93
6g	Ph ₂ C(Cl)C(CN)Ph ₂	5.5	5.5	$Ph_2C(CN)C(CN)Ph_2^h$	90
7	Ph ₂ C(Cl)C(Cl)Ph ₂	10	12	Ph ₂ C(CN)C(CN)Ph ₂	53

^a In all entries, 5 mmol of benzylic chlorides was used. ^b The yields are isolated yields. ^c See ref 12. ^d The reaction was run at 0 °C for 2 h and stirred overnight at room temperature. See ref 13. See ref 14. The reaction was run at 0 °C for 2 h and stirred at room temperature for another 2.5 h. h See ref 3.

nitrile by titanium tetrachloride. Moreover, alkyl isonitriles are reported8 to form complexes with TiCl4 and AlCl₃ without generating cations that isomerize the isonitrile to nitrile. Benzylic halides appear to behave differently from the tertiary alkyl halides toward TiCl4, and it appears that benzylic isonitriles may rearrange to nitriles much more readily than alkyl isonitriles.

Mechanism 2

- R₃CCI + TiCI, R₃C⁺TiCI,
- R₃C⁺TiCl₅ + (CH₃)₃Si-C=N ===== R₃C-N=C-Si(CH₃)₃TiCl₅
- $R_3C-\dot{N}\equiv C-Si(CH_3)_3TiCl_5$ \rightleftharpoons $R_3C-\dot{N}\equiv\dot{C}:+(CH_3)_3SiCl+TiCl_4$
- R₃C+TiCl₅ + R₃C-N=C: R₃C-C=N-CR₃TiCl₅
- R₃C-C=N-CR₃TiCl₅ R₃C-CN + R₃C+TiCl₆

Trityl isonitrile (Ph₃CNC), 4, is a stable compound obtained by the dehydration of N-tritylformamide. Treatment of isonitrile 4 with TiCl₄ at 0 °C for 2.0 h in CH₂Cl₂ gave triphenylacetonitrile, 5, in 90% yield. Similarly, treatment of 4 with trityl tetrafluoroborate under the cyanation reaction conditions of Table 1 again produced nitrile 5 (95%) and triphenylmethanol (95%). These experiments show that if the isonitrile 4 is an intermediate, either TiCl4 or the benzylic cation intermediate derived from the benzylic chlorides would have rapidly rearranged it to the nitrile. Perhaps the isomerization of 4 to 5 by TiCl₄ should not be so surprising for the benzylic systems shown in Table 1 because the carbocations formed are all doubly or triply benzylic. In addition, they are sterically hindered with bulky phenyl groups.

Another fact about isonitriles is that they thermally rearrange to nitriles upon heating at 200 °C in unimolecular fashion.¹⁰ It is possible that π -complexation with TiCl₄ merely causes this isomerization to occur at a lower temperature.

Trityl tetrafluoroborate (1.0 mmol) in the absence of TiCl₄ reacts with TMSCN (1.0 mmol) to give the nitrile 5 (96%). This suggests that in the TMSCN reaction of benzylic halides the function of TiCl4 is primarily that of cation generation.

When 4 and TiCl₄ were combined at -78 °C for 2.0 h in CH_2Cl_2 , followed by quenching with methanol, 4 was recovered unchanged; this showed that TiCl4 cannot isomerize the isonitrile at -78 °C. In contrast, when 4 was treated with Ph₃C+BF₄ at -78 °C for 2 h and hydrolyzed with water, nitrile 5 (93%) and triphenylmethanol (91%) were secured. A reaction of TMSCN, Ph₃CCl, TiCl₄, and CH₂Cl₂ at -78 °C was quenched with methanol and gave methyl trityl ether; this seems to suggest that the trityl cation-titanium pentachloride anion does not react with TMSCN at -78 °C.

In conclusion, it has been shown that doubly benzylic chlorides are substituted by the cyano group with TM-SCN and TiCl4 in excellent yields. In addition, the dichloro substrates dichlorodiphenylmethane and 1 can be mono- or disubstituted as desired in 85-90% yields. Finally, the experiments run on trityl isonitrile can be interpreted in terms of the mechanisms proposed earlier for tertiary alkyl halides, but not as distinguishing whether the carbocation intermediate attacks the isonitrile or nitrile form of trimethylsilyl cyanide.4b

Experimental Section

CH₂Cl₂ was distilled over CaH₂ prior to use. Benzyl chloride, chlorodiphenylmethane, and dichlorodiphenylmethane were purified by vacuum distillation. Chlorotriphenylmethane was recrystallized from benzene-acetyl chloride. TiCl4 (1.0 M in CH₂Cl₂), trimethylsilyl cyanide, and Ph₃C⁺BF₄⁻ were obtained from Aldrich Chemical Co. and used as supplied. sym-Tetraphenylethylene dichloride (1) was prepared according to the literature procedure. 2 N-Tritylformamide was obtained as described by Theilig and his co-workers11 in 81% yield, mp 201-203 °C. NMR spectra were recorded on a Brucker 250-MHz FT NMR spectrometer. Infrared spectra were taken using a Perkin-Elmer Model 1320 spectrometer. Flash chromatography was performed on silica gel (230-400 mesh). Elemental analyses were done by Desert Analytics. Melting points were uncorrected.

Synthesis of 3-Chloro-2,2,3,3-tetraphenylpropanenitrile (2) (Entry 5, Table 1). General Procedure. To a solution of sym-tetraphenylethylene dichloride (1) (2.02 g, 5.0 mmol) and trimethylsilyl cyanide (0.50 g, 5.0 mmol) in 25 mL of dry CH_2Cl_2 was added TiCl₄ (5.0 mL, 1.0 M in CH_2Cl_2) dropwise with stirring at 0 °C. After 2.0 h, the reaction was quenched with 10 mL of CH₃OH, and the product was extracted with CH2Cl2. The organic layer was washed with water, 10% NaHCO₃ solution, and water and then dried over Na₂SO₄. The solvent was removed, and the crude product was recrystallized from acetone to afford 1.84 g (93%) of compound **2**, mp 140 °C dec. ¹H NMR (CDCl₃): δ 7.12-7.32 (m). ¹⁸C NMR (CDCl₃): δ 61.26, 81.07, 122.33, 126.93, 127.18, 127.91, 128.14, 131.07, 131.63, 138.40, 142.18. Anal. Calcd for C₂₇-H₂₀NCl: C, 82.33; H, 5.12; N, 3.56; Cl, 9.00. Found: C, 82.80; H, 5.21; N, 3.29; Cl, 8.65.

Attempted Cyanation of Benzyl Chloride. Under the above reaction conditions benzyl chloride remained inert and 90% was recovered by a bulb-to-bulb distillation.

⁽⁸⁾ Saegusa, T.; Taka-ishi, N.; Ito, Y. J. Org. Chem. 1969, 34, 4040.
(9) Alexandrou, N. E. J. Org. Chem. 1965, 30, 1335.
(10) (a) Langhals, H.; Range, G.; Wistuba, E.; Rüchardt, C. Chem.

<sup>Ber. 1981, 114, 3813. (b) Casanova, J., Jr.; Werner, N. D.; Schuster,
R. E. J. Org. Chem. 1966, 31, 3473. (c) Schneider, F. W.; Rabinovitch,
B. S. J. Am. Chem. Soc. 1963, 85, 2365. (d) Schneider, F. W.;</sup> Rabinovitch, B. S. J. Am. Chem. Soc. 1962, 84, 4215.

⁽¹¹⁾ Bredereck, H.; Gompper, R.; Theilig, G. Chem. Ber. 1954, 87,

Cyanation of Chlorodiphenylmethane (Entry 1, Table 1). Similarly, chlorodiphenylmethane (1.01 g, 5.0 mmol) was cyanated with TMSCN (0.55 g, 5.5 mmol) and TiCl₄ (5.5 mmol) to give diphenylacetonitrile (0.89 g, 93% yield), mp 71–72 °C.

Cyanation of Dichlorodiphenylmethane (Entry 2, Table 1). Under the same reaction conditions, dichlorodiphenylmethane (1.19 g, 5.0 mmol) reacted with TMSCN (0.50 g, 5.0 mmol) and TiCl₄ (5.0 mmol) to yield α -chlorodiphenylacetonitrile (1.03 g, 91%) as a colorless oil after being purified by flash chromatography (CH₂Cl₂-hexane 1:2). The 13 C NMR data in the literature 12 for this compound inadvertently omitted one signal. The complete spectral data are as follows. 1 H NMR (CDCl₃): δ 7.36–7.38 (m, 6H), 7.54–7.58 (m, 4H). 13 C NMR (CDCl₃): δ 63.34, 118.47, 127.07, 128.84, 129.57, 138.01; IR (neat, cm $^{-1}$) 2250, 1490, 1445, 1180, 829, 740, 689.

In another run, when 5.0 mmol of dichlorodiphenylmethane was treated with 11.0 mmol each of TMSCN and TiCl₄, a 98% yield of α -chlorodiphenylacetonitrile was obtained.

Cyanation of α -Chlorodiphenylacetonitrile (Entry 3, Table 1). A solution of α -chlorodiphenylacetonitrile (1.14 g, 5.0 mmol) and TMSCN (0.55 g, 5.5 mmol) in 25 mL of dry CH₂-Cl₂ was treated with TiCl₄ (5.5 mL, 1.0 M in CH₂Cl₂) at 0 °C. After being stirred for 2.0 h, the reaction mixture was allowed to warm to room temperature, and stirring was continued overnight. It was then quenched with 5 mL of CH₃OH and extracted with CH₂Cl₂. The organic phase was washed with water, NaHCO₃ solution, and water and then dried over Na₂-SO₄. Removal of the solvent and recrystallization of the crude product from CH₃OH-H₂O yielded 0.93 g of diphenylmalononitrile (85% yield), mp 83–85 °C (lit. 13 mp 87.5 °C). 1H NMR (CDCl₃): δ 7.44–7.48 (m, 6H), 7.49–7.54 (m, 4H). 13C NMR (CDCl₃): δ 46.25, 114.73, 126.57, 129.73, 129.97, 133.56.

Cyanation of Chlorotriphenylmethane (Entry 4, Table 1). Following the general procedure, 1.39 g (5.0 mmol) of chlorotriphenylmethane and 0.55 g (5.5 mmol) of TMSCN in 25 mL of CH₂Cl₂ were treated with TiCl₄ (5.5 mmol). Recrystallization of the crude product from hexane yielded 1.28 g (95%) of triphenylacetonitrile (5), mp 127–129 °C (lit. 14 mp 127–128 °C). 14 NMR (CDCl₃): δ 7.21–7.24 (m, 6H), 7.32–7.35 (m, 9H). 13C NMR (CDCl₃): δ 57.40, 123.41, 128.10, 128.62, 128.78, 140.19.

Cyanation of 3-Chloro-2,2,3,3-tetraphenylpropanenitrile (2) (Entry 6, Table 1). In a like manner, 1.97 g (5.0 mmol) of 2 and 0.55 g (5.5 mmol) of TMSCN in 35 mL of CH₂-Cl₂ were treated with TiCl₄ (5.5 mmol). The reaction mixture was stirred at 0 °C for 2.0 h and another 2.5 h at room temperature, followed by methanol quenching. The crude product was recrystallized from acetic acid to afford 1.73 g (90%) of 2,2,3,3-tetraphenylsuccinonitrile (3), mp 219–222 °C (lit.³ mp 222–224 °C). 13 C NMR (CDCl₃): δ 59.20, 121.09, 128.04, 128.54, 130.08, 136.99.

Dicyanation of Dichloride 1 (Entry 7, Table 1). Similarly, dichloride 1 (5 mmol) could be dicyanated with TMSCN (11.2 mmol) and TiCl₄ (15 mmol) to give a 54% yield of 3.

Preparation of Trityl Isonitrile (4). A modified literature procedure was used to prepare 4. N-Tritylformamide (10.0 g, 34.8 mmol) in 40 mL of dry pyridine was treated with p-toluenesulfonyl chloride (8.25 g). The reaction mixture was stirred at room temperature for 6.0 h, and then cold water was added. After filtration, the solid was washed with water and recrystallized from hexane (or diethyl ether) to afford 4.33 g (46%) of purified 4, mp 127–130 °C (lit. mp 130–133 °C). ¹H NMR (CDCl₃): δ 7.22–7.24 (m, 6H), 7.31–7.43 (m, 9H). ¹³C NMR (CDCl₃): δ 74.97, 128.08, 128.25, 128.31, 141.64, 157.82.

The Reaction of 4 with TiCl₄ at 0 and -78 °C. To a solution of 4 (0.27 g, 1.0 mmol) in 10 mL of CH₂Cl₂ was added TiCl₄ (1.0 mL, 1.0 M in CH₂Cl₂) at 0 °C. After 2.0 h, the reaction was quenched with 10 mL of CH₃OH, followed by aqueous workup. Recrystallization of the crude product from hexane yielded 0.24 g (90%) of triphenylacetonitrile (5), mp 127-129 °C.

When the same reaction was run at -78 °C, 4 was recovered in 91% yield.

The Reaction of 4 with Ph₃C⁺BF₄⁻ at 0 and -78 °C. Trityl tetrafluoroborate (0.33 g, 1.0 mmol) was added to a solution of 4 (0.27 g, 1.0 mmol) in 10 mL of CH₂Cl₂ at 0 °C. After being stirred for 2 h, the reaction was quenched with 10 mL of cold water. The products were extracted with CH₂Cl₂, and the combined organic layer was dried over Na₂SO₄ and concentrated. The solid residue was subjected to flash chromatography, and the following results were obtained: triphenylacetonitrile (5), 0.26 g, 95% yield; CH₂Cl₂-hexane 3:7; triphenylmethanol, 0.25 g, 95% yield; CH₂Cl₂-hexane 7:3.

Similarly, when the reaction was carried out at -78 °C, 5 and triphenylmethanol were isolated in 93% and 91% yields, respectively.

The Reaction of TMSCN with Ph₃C⁺BF₄⁻. TMSCN (0.099 g, 1.0 mmol) in 10 mL of CH₂Cl₂ was treated with Ph₃-C⁺BF₄⁻ (0.33 g, 1.0 mmol) at 0 °C for 2 h. After aqueous workup and recrystallization from hexane, a 96% yield of 5 was obtained.

Cyanation of Chlorotriphenylmethane with TMSCN and TiCl₄ at -78 °C. The general cyanation procedure was followed, except that the reaction was run at -78 °C. After the reaction was quenched with 20 mL of CH₃OH, followed by aqueous workup, 1.31 g (96% yield) of methyl trityl ether was obtained (recrystallized from 95% ethanol), mp 79–81 °C (lit. 15 mp 82.6–82.9 °C).

Acknowledgment. This research was supported by the City University Faculty Research Award Program through PSC-CUNY Grant 6-63277. We gratefully acknowledge this support.

Supplementary Material Available: 1 H and 13 C NMR spectra for 2–5, α -chlorodiphenylacetonitrile, diphenylmalononitrile, and methyl trityl ether (15 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽¹²⁾ Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1988, 110, 1862.
(13) Bennett, R. N.; Jones, E.; Ritchie, P. D. J. Chem. Soc. 1956,

^{2628. (14)} Schimelpfenig, C. J. Org. Chem. 1961, 26, 4156.

⁽¹⁵⁾ Norris, J. F.; Cresswell, A. J. Am. Chem. Soc. 1933, 55, 4946.